## Dr. Ujjwal Kumar Pahari, Assistant Professor, Department of Mathematics

# Netaji Nagar Day College

Topic for – Semester 2 Paper- MTMA CC2 (Real Analysis)

### **Basic Concepts of Real Analysis**

Set: A well-defined collection of distinct objects is called a set. A set is usually denoted by capital letters A, B, X .... and an element of a set is denoted by small letters a, b, x, ... When x is an element of a set A, it is expressed by the symbol  $x \in A$ . When x is not an element of a

set *A*, it is expressed by the symbol  $x \in A$ .

**Subsets:** Let A and B two sets. If  $x \in A \Rightarrow x \in B$ , then A is said to be a subset of B, denoted by  $A \subset B$  or  $B \supset A$ . This means that each element of A is an element of B. In this case B is said to be a superset of A. Whenever  $A \subset B$  we say that B contains the set A.



**Natural Numbers:** The natural numbers are: 1, 2, 3, ..... The set of Natural numbers is denoted by **N**.

Whole Numbers: Whole numbers are: 0, 1, 2, 3,..... The set of whole numbers is denoted by W.

**Integers:** Integers are: ....... -3, -2, -1, 0, 1, 2, 3, ..... The set of Integers is denoted by **Z**.

Positive integers are: 1, 2, 3, .....

Negative integers are: -1, -2, -3, .....

The number Zero '0' is an integer but it is neither positive integer nor negative integer.

**Rational numbers:** A rational number is of the form  $\frac{p}{q}$  where p and q are integers and  $q \neq 0$ .

Every integer is a rational number. The set of rational numbers is denoted by  $\mathbf{Q}$ .  $Z \subset Q$ .

Between two rational numbers there exists infinite number of elements of Q. But there are some gaps between the rational numbers in form of irrational numbers.

**Irrational numbers:** The numbers which are not rational numbers are irrational numbers. Example:  $\sqrt{5}$ ,  $\sqrt[3]{2}$ , log 2,  $\pi$ , *e* etc.

**Real numbers:** The set containing all rational as well as irrational numbers is called the set of real numbers, denoted by **R**.

$$N \subset W \subset Z \subset Q \subset R$$

The set of rational numbers  $\mathbf{Q}$  is an ordered field but not complete. Q is dense in R as well as dense-in-itself.

■ The set of Real numbers **R** is a complete ordered field. It is also dense-in-itself.

**Cantor-Dedekind Axiom:** There is a one-to-one correspondence between the set of all points on a line and the set of all real numbers.

**Equivalent set:** A set A is said to be equivalent to a set B (or equipotent or similar to B) if  $\exists$  a bijection  $f: A \rightarrow B$  and is denoted by  $A \sim B$ .

**Enumerable set:** Let S be a subset of R. S is said to be enumerable (or denumerable or countably infinite) if  $\exists$  a bijection  $f: N \rightarrow S$  i.e., if S and N are equipotent sets.

A set which either finite or enumerable is said to be countable set.

- The set N, Q, the set of rational numbers in [0, 1] are enumerable.
- R, (0, 1), [0, 1], the set of all irrational numbers in [0, 1] are non-denumerable. Also, the set of all irrational numbers are uncountable.

**Concept of bounds:** A set  $S \subset R$  of real numbers is **bounded above** if there exists a real number  $u \in R$ , called **an upper bound** of S, such that  $x \le u$  for every  $x \in S$ .

Similarly, S is **bounded below** if there exists a real number  $l \in \mathbb{R}$ , called **a lower bound** of S, such that  $x \ge l$  for every  $x \in S$ .

S is said to be **a bounded set** if S is bounded above as well as bounded below, i.e.,  $\exists$  real



numbers *l* and *u* such that  $l \le x \le u$ ,  $\forall x \in R$ .

**Example:** Let  $A = \{x \in R : 1 < x < 2\}$  and  $B = \{x \in R : 1 \le x \le 2\}$ . Both the sets are bounded above, 2 being an upper bound. Also, the numbers greater than 2 are also upper bounds.

Both the sets Both the sets are bounded below, 1 being a lower bound. Also, the numbers less than 1 are also lower bounds.

Both the sets are bounded sets. The null set  $\emptyset$  is also an example of bounded set.

**Supremum or least upper bound (lub):** Let S be a subset of R. If S be bounded above then an upper bound of S is said to be the supremum of S if it is less than every other upper bound of S. That is, for a non-empty set S bounded above  $\exists$  a real number M (called supremum of S) such that i)  $x \leq M \quad \forall x \in S$ 

ii)  $\forall \in (> 0)$  however small,  $\exists \alpha \in S$  such that  $M - \varepsilon < \alpha \leq M$ .



Supremum of a set may or may not be a member of a set. In the above examples, the number 2 is the supremum of both the sets A and B but  $2 \notin A$  and  $2 \in B$ .

**Infimum or greatest lower bound (glb):** Let S be a subset of R. If S be bounded below then a lower bound of S is said to be the infimum of S if it is greater than every other lower bound of S. ). That is, for a non-empty set S bounded below  $\exists$  a real number *m* (called infimum of S) such that i)  $x \ge m \quad \forall x \in S$ 

ii)  $\forall \in (> 0)$  however small,  $\exists \beta \in S$  such that  $m \leq \beta < m + \epsilon$ .



Infimum of a set may or may not be a member of a set. In the above examples, the number 1 is the infimum of both the sets A and B but  $1 \notin A$  and  $2 \in B$ .

**Completeness Property (axiom of lub):** Every non-empty subset of R that is bounded above has a least upper bound (or a supremum).

Theorem: A non-empty set S bounded below has its infimum (greatest lower bound.

**Oscillation of a bounded set:** If S be a bounded set with supremum M and infimum m, then M - m is defined as oscillation of the set.

**Example:** If S be bounded and  $|x| \le A \ \forall x \in S$ , then  $\forall x, y \in S \ |x - y| \le |x| + |y| \le 2A$ .

#### **Archimedean Property of R:**

If  $x, y \in R$  and x > 0, y > 0, then  $\exists$  a natural number *n* such that ny > x.

**Deductions:** i) If  $x \in R$ , then  $\exists$  a natural number *n* such that n > x.

ii) If  $x \in R$  and x > 0, then  $\exists$  a natural number *n* such that  $0 < \frac{1}{n} < x$ .

iii) If  $x \in R$  and x > 0, then  $\exists$  a natural number *m* such that  $m - 1 \le x < m$ .

iv) If  $x \in R$ , then  $\exists$  an integer *m* such that  $m - 1 \le x < m$ .

Note:  $+\infty$  and  $-\infty$  are not real numbers. The set R together with the two symbols  $+\infty$  and  $-\infty$  is called extended set of real numbers.

Linear point set: A set of real numbers (i.e., any subset of R) is defined as a linear point set.

**Intervals:** Let  $a, b \in R$  and a < b.

Open interval  $(a, b) = \{x \in R : a < x < b\}$ 



Closed interval  $[a, b] = \{x \in R : a \le x \le b\}$ Semi closed interval  $(a, b] = \{x \in R : a < x \le b\}$  or  $[a, b) = \{x \in R : a \le x < b\}$  $(a, \infty) = \{x \in R : a < x < \infty\}$  $[a, \infty) = \{a \le x < \infty\}$ 

 $(-\infty, b) = \{x \in R : -\infty < x < b\}$  $(-\infty, b] = \{x \in R : -\infty < x \le b\}$ 

**Neighbourhood:** A subset  $S \subset R$  is said to be a nbd of  $c \in R$  if  $\exists$  an open interval (a, b) such that  $c \in (a, b) \subset S$ .

• An open bounded interval containing c is a nbd of c.

■ A closed bounded interval containing *c* may not be a nbd of *c*.  $2 \in [2, 5]$  but the closed interval [2, 5] is not a nbd of 2 because we cannot find an open interval containing c which is a subset of [2, 5].

- A non-empty finite set is not a nbd of any point.
- $N(c, \delta) = (c \delta, c + \delta)$  is known  $\delta$  neighbourhood of  $c \in R$  where  $\delta > 0$ .



 $N'(c, \delta) = (c - \delta, c + \delta) - \{c\}$  is known as deleted  $\delta$ -neighbourhood of *c* where  $\delta > 0$ .

**Limit point (accumulation point or cluster point):** Let S be a subset of R. A point c in R (which may or may not be a member of S) is said to be a limit point of S if every nbd of c contains a point of S other than c. i.e., every deleted nbd of c contains a point of S. i.e., if

 $\forall \varepsilon (> 0) \quad N'(c, \varepsilon) \cap S \neq \emptyset.$ 

**Theorem:** If *c* be a limit point of S then  $\forall \epsilon (> 0) N(c, \epsilon)$  contains an infinite number of members of S.

- A set may have no limit point: the set N of natural numbers has no limit point. Also, a finite set has no limit point.
- A set may have only one limit point: For the set  $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\}$ , '0' is the limit point but '0' is not a member of the set S.
- A set may have more than one limit points: For the set  $\{1, 1+1, \frac{1}{2}, 1+\frac{1}{2}, \frac{1}{3}, 1+\frac{1}{3}, \dots \}$  '0' and '1' are two limit points.
- A set may have infinite number of limit points: For the open interval (a, b) each point in the closed interval [a, b] is a limit point.

**Derived set:** Let S be subset of R. The set of all limit points of S is said to be the derived set of S and is denoted by S'.  $N' = \emptyset$ ,  $Z' = \emptyset$ , Q' = R, R' = R,  $\emptyset' = \emptyset$ , (a, b)' = [a, b].

#### **Result:** A finite set has no limit point.

**Proof:** If possible, let *c* be a limit point of a finite set S. Then  $\forall \varepsilon (> 0) \ N(c, \varepsilon)$  must contain an infinite number of members of S, which contradicts the hypothesis that S has a finite number of members.

**Bolzano-Weierstrass theorem (on set):** Every bounded infinite subset of R has a limit point (in R).

# **Few definitions**

Interior point: Let S be subset of R. A point α ∈ S is said to be an interior point of S if ∃ ε (> 0) s. t. N(α, ε) ⊂ S

Remark: An interior point of a set must be a member of the set.

Boundary point: Let S be subset of R. A point α ∈ R is said to be a boundary point of S if ∀ ε (> 0) N(α, ε) contains points of s as well as point not belonging to S.

Remark: A boundary point of a set may or may not be a member of a set.

Exterior point: Let S be subset of R. A point α ∈ R is said to be an exterior point of S if ∃ ε (> 0) s. t. N(α, ε) ∩ S = Ø.

**Remark:** An exterior point of S must not be a member of S.

Isolated point: Let S be subset of R. A point α ∈ S is said to be an isolated point of S if ∃ ε (> 0) s. t. N(α, ε) ∩ S = {α}.

i.e.,  $\alpha$  is an isolated point of S if  $\exists \epsilon (> 0) s.t. N(\alpha, \epsilon)$  contains no point of S other than  $\alpha$ .

**Remark:** An isolated point of a set must be a member of the set.

Adherent point: Let S be subset of R. A point α ∈ R is said to be an adherent point of S if every nbd of α contains a point of S. i.e., if ∀ ε (> 0) N(α, ε) ∩ S ≠ Ø.
Remark: An adherent point may or may not belong to the set and it is either an isolated point or a limit point of the set.

**Closure of a set:** Let S be a subset of R. The set of all adherent points of S is said to be the closure of S and is denoted by  $\overline{S}$ . Thus, closure of S is defined to be the set of all points of S as well as the limit points of S. i.e.,  $\overline{S} = S \cup S'$ .

- Dense Set: Let A and B be two subsets of R. If A ⊂ B and every point of B is a limit point of A, i.e., x ∈ B ⇒ x ∈ A', (or B ⊂ A'), then A is said to be dense in B. For example, the set Q is dense in R, since Q ⊂ R and every Real number is a limit point of Q (as Q' = R).
- If A = B, we obtain the following definition:

If every point of a set S is a limit point of itself i.e., if  $S \subset S'$ , then S is said to be **dense-in-itself**. For example, the set of rational numbers Q is dense-in-itself. The set of real numbers R is dense-in-itself. Also, every open set is dense-in-itself.

• **Perfect set:** Let S be a subset of R. S is said to be a perfect set if it is both closed and dense-in-itself.

We know that a set S is closed if  $S' \subset S$ . Also, if  $S \subset S'$ , then it is dense-in-itself. Therefore, a set is perfect if S = S'.

Any closed interval [a, b], the void set Ø, the set R are the examples of perfect sets.

**Theorem:** An interior point of a set  $S \subset R$  is a limit point of S.



**Proof:** Let c be an interior point of S. If it is not a limit point of S, then  $\exists \epsilon (> 0) s.t.$  $N'(c, \epsilon)$  does not contain any element of S. Hence, no  $(+)ve \delta$  can be found s.t.  $N(c, \delta) \subseteq S$  which contradicts the fact that a is an interior point. Hence, a is a limit point

 $N(c, \delta) \subset S$  which contradicts the fact that *c* is an interior point. Hence, *c* is a limit point of S.

**Theorem:** Any point  $\alpha$  is either an interior point or a boundary point or an exterior point of a given linear point set S.

**Proof:** Let S be a given linear point set and  $\alpha$  be any point. If  $\alpha$  is not a boundary point of S,  $\exists \epsilon (> 0) s.t.$  either  $N(\alpha, \epsilon)$  contains only points of S or  $N(\alpha, \epsilon)$  contains only points not of S.

In case-I,  $N(\alpha, \varepsilon) \subset S$  i.e.  $\alpha$  is an interior point of S.

In case-II,  $N(\alpha, \varepsilon) \cap S = \emptyset$  in which case  $\alpha$  is an exterior point of S.

**Theorem:** A boundary point of a set  $S \subset R$  is either a limit point of S or an isolated point of S.

**Proof:** If *c* be a boundary point of S, then  $\forall \varepsilon (> 0) \ N(c, \varepsilon)$  contains points of S as well as points not of S. If  $\forall \varepsilon (> 0) \ N(c, \varepsilon)$  contains points of S other than *c*, then *c* is the limit point of S. If this does not hold  $\exists \varepsilon (> 0) \ s.t.N(c, \varepsilon)$  does not contain points of S other than *c*. In this case  $c \in S$  and further *c* is an isolated point of S.

**Interior, Exterior, Boundary of a set S:** Let S be a subset of R. The set of all interior points of S is said to be the *interior* of S and is denoted by *int* S (or by  $S^0$ ). The set of all exterior points of S is said to be the *exterior* of S and is denoted by *ext* S. The set of all boundary points of S is said to be the *boundary* of S and is denoted by  $\delta S$  or Bd S.

**Example:** Let I = (a, b) be an open interval. Then, every member of I is an interior point of I. The points *a* and *b* are boundary points of I. Also, any point  $\alpha < a$  and  $\beta > b$  are exterior points of I.

**Solution:** Let  $c \in I$ . Choosing a  $(+)ve \ \varepsilon < min \ (c - a, b - c)$ , we have  $N(c, \varepsilon) \subset I$ .

 $\therefore$  *c* is an interior point of I. Since *c* is an arbitrary point of I, every member of I is an interior point of I.



**2nd Part:** The point 'a' is a boundary point of I, since  $\forall \varepsilon (> 0)$   $N(a, \varepsilon)$  contains points of I as well as points not of I. Similarly, *b* is also a boundary point of I.

**3***rd* **Part:** If  $\alpha < a$ , then choosing  $(+)ve \varepsilon < a - \alpha$ , we get  $N(\alpha, \varepsilon) \cap I = \emptyset$ .

 $\therefore$   $\alpha$  is an exterior point of I. Similarly, if  $\beta > b$ , then  $\beta$  is an exterior point of I.

**Note:** Let J = [a, b] be a closed interval. Then, every member x (a < x < b) of J is an interior point of I. The points a and b are boundary points of J. Also, any point  $\alpha$  < a and  $\beta$  > b are exterior points of J.

**Open set and closed set:** Let S be a subset of R. S is said to be an **open set** if each point of S is an interior point of S. S is said to be a **closed set** if no point outside of S is a limit point of S. i.e., if S contains all its limit points. In other words, if the derived set  $S' \subset S$ .

#### Example: An open interval is an open set and a closed interval is a closed set.

**Solution:** Let I = (a, b). Let  $c \in I$ . Then choosing (+) $ve \ \varepsilon < \min(c - a, b - c)$  it follows that  $N(c, \varepsilon) \subset I$ . So, *c* is an interior point of I. Thus, every point of I is an interior point of I. hence I is an open set.

Let J = [a, b]. Let  $c \notin J$ . If c < a, choosing a (+) $ve \ \varepsilon < a - c$ , it can be seen that  $N(c, \varepsilon)$  does not contain any element of J. Hence, *c* is not a limit point of J.



Again, if c > b, choosing a (+) $ve \ \varepsilon < c - b$ , it follows that N (c,  $\varepsilon$ ) does not contain any element of J. Hence, c is not a limit point of J. Thus, no point outside of J is a limit point of J. So, J is a closed set.

**Example:** A finite set is a closed set.

**Solution:** Since a finite set S contains only a finite number of points, it has no limit points.  $\therefore S' = \varphi$ , Hence  $S' \subset S$ .  $\therefore$  S is a closed set.

**Theorem:** The derived set *S* ' of any set *S* is closed.

Theorem: Complement of an open set is closed and complement of a closed set is open.

• The sets R and  $\emptyset$  are both open and closed sets.