Dr. Ujjwal Kumar Pahari, Assistant Professor, Department of Mathematics
 Netaji Nagar Day College

 Topic for - Semester 2 Paper- MTMA CC2 (Real Analysis)

 Topic for - Semester 2 Paper- MTMA CC2 (Real Analysis)}

Basic Concepts of Real Analysis

Set: A well-defined collection of distinct objects is called a set. A set is usually denoted by capital letters A, B, X \ldots. and an element of a set is denoted by small letters $\mathrm{a}, \mathrm{b}, \mathrm{x}, \ldots$ When x is an element of a set A , it is expressed by the symbol $x \in A$. When x is not an element of a
set A, it is expressed by the symbol $x \in A$.

Subsets: Let A and B two sets. If $x \in A \Rightarrow x \in B$, then A is said to be a subset of B , denoted by $A \subset B$ or $B \supset A$.This means that each element of A is an element of B . In this case B is said to be a superset of A . Whenever $A \subset B$ we say that B contains the set A .

Natural Numbers: The natural numbers are: 1, 2, 3, The set of Natural numbers is denoted by \mathbf{N}.

Whole Numbers: Whole numbers are: $0,1,2,3, \ldots \ldots$ The set of whole numbers is denoted by \mathbf{W}.

Integers: Integers are: $\ldots \ldots \ldots-3,-2,-1,0,1,2,3, \ldots \ldots$ The set of Integers is denoted by \mathbf{Z}.
Positive integers are: $1,2,3, \ldots \ldots \ldots$
Negative integers are: $-1,-2,-3$, \qquad
The number Zero ' $\mathbf{0}$ ' is an integer but it is neither positive integer nor negative integer.
Rational numbers: A rational number is of the form $\frac{p}{q}$ where p and q are integers and $q \neq 0$.
Every integer is a rational number. The set of rational numbers is denoted by $\mathbf{Q} . Z \subset Q$.

Between two rational numbers there exists infinite number of elements of Q . But there are some gaps between the rational numbers in form of irrational numbers.

Irrational numbers: The numbers which are not rational numbers are irrational numbers. Example: $\sqrt{5}, \sqrt[3]{2}, \log 2, \pi, e$ etc.

Real numbers: The set containing all rational as well as irrational numbers is called the set of real numbers, denoted by \mathbf{R}.

$$
N \subset W \subset Z \subset Q \subset R
$$

\square The set of rational numbers \mathbf{Q} is an ordered field but not complete. Q is dense in R as well as dense-in-itself.

- The set of Real numbers \mathbf{R} is a complete ordered field. It is also dense-in-itself.

Cantor-Dedekind Axiom: There is a one-to-one correspondence between the set of all points on a line and the set of all real numbers.

Equivalent set: A set A is said to be equivalent to a set B (or equipotent or similar to B) if \exists a bijection $f: A \rightarrow B$ and is denoted by $A \sim B$.

Enumerable set: Let S be a subset of R. S is said to be enumerable (or denumerable or countably infinite) if \exists a bijection $f: N \rightarrow S$ i.e., if S and N are equipotent sets.

A set which either finite or enumerable is said to be countable set.

- The set N, Q, the set of rational numbers in $[0,1]$ are enumerable.
- $\mathrm{R},(0,1),[0,1]$, the set of all irrational numbers in $[0,1]$ are non-denumerable. Also, the set of all irrational numbers are uncountable.

Concept of bounds: A set $\mathrm{S} \subset \mathrm{R}$ of real numbers is bounded above if there exists a real number $u \in R$, called an upper bound of S, such that $x \leq u$ for every $\mathrm{x} \in \mathrm{S}$.

Similarly, S is bounded below if there exists a real number $l \in R$, called a lower bound of S, such that $x \geq l$ for every $x \in S$.
S is said to be a bounded set if S is bounded above as well as bounded below, i.e., \exists real
numbers l and u such that $l \leq x \leq u, \forall x \in R$.

Example: Let $A=\{x \in R: 1<x<2\}$ and $B=\{x \in R: 1 \leq x \leq 2\}$. Both the sets are bounded above, 2 being an upper bound. Also, the numbers greater than 2 are also upper bounds.

Both the sets Both the sets are bounded below, 1 being a lower bound. Also, the numbers less than 1 are also lower bounds.

Both the sets are bounded sets. The null set \varnothing is also an example of bounded set.

Supremum or least upper bound (lub): Let S be a subset of R. If S be bounded above then an upper bound of S is said to be the supremum of S if it is less than every other upper bound of S. That is, for a non-empty set S bounded above \exists a real number M (called supremum of S) such that i) $x \leq M \quad \forall x \in S$
ii) $\forall \in(>0)$ however small, $\exists \alpha \in S$ such that $\mathrm{M}-\varepsilon<\alpha \leq \mathrm{M}$.

Supremum of a set may or may not be a member of a set. In the above examples, the number 2 is the supremum of both the sets A and B but $2 \notin A$ and $2 \in B$.

Infimum or greatest lower bound (glb): Let S be a subset of R. If S be bounded below then a lower bound of S is said to be the infimum of S if it is greater than every other lower bound of S.). That is, for a non-empy set S bounded below \exists a real number m (called infimum of S) such that \quad i) $x \geq m \quad \forall x \in S$
ii) $\forall \in(>0)$ however small, $\exists \beta \in S$ such that $m \leq \beta<m+\epsilon$.

Infimum of a set may or may not be a member of a set. In the above examples, the number 1 is the infimum of both the sets A and B but $1 \notin A$ and $2 \in B$.

Completeness Property (axiom of lub): Every non-empty subset of R that is bounded above has a least upper bound (or a supremum).

Theorem: A non-empty set S bounded below has its infimum (greatest lower bound.
Oscillation of a bounded set: If S be a bounded set with supremum M and infimum m, then $M-m$ is defined as oscillation of the set.

Example: If S be bounded and $|x| \leq A \forall x \in S$, then $\forall x, y \in S \quad|x-y| \leq|x|+|y| \leq 2 A$.

Archimedean Property of R:

If $x, y \in R$ and $x>0, y>0$, then \exists a natural number n such that $n y>x$.
Deductions: i) If $x \in R$, then \exists a natural number n such that $n>x$.
ii) If $x \in R$ and $x>0$, then \exists a natural number n such that $0<\frac{1}{n}<x$.
iii) If $x \in R$ and $x>0$, then \exists a natural number m such that $m-1 \leq x<m$.
iv) If $x \in R$, then \exists an integer m such that $m-1 \leq x<m$.

Note: $+\infty$ and $-\infty$ are not real numbers. The set R together with the two symbols $+\infty$ and $-\infty$ is called extended set of real numbers.

Linear point set: A set of real numbers (i.e., any subset of R) is defined as a linear point set.
Intervals: Let $a, b \in R$ and $a<b$.

Open interval $\quad(a, b)=\{x \in R: a<x<b\}$

Closed interval $[a, b]=\{x \in R: a \leq x \leq b\}$
Semi closed interval $(a, b]=\{x \in R: a<x \leq b]$ or $[\mathrm{a}, \mathrm{b})=\{\mathrm{x} \in \mathrm{R}: \mathrm{a} \leq \mathrm{x}<\mathrm{b}\}$
$(a, \infty)=\{x \in R: a<x<\infty\}$
$[a, \infty)=\{a \leq x<\infty\}$
$(-\infty, b)=\{x \in R:-\infty<x<b\}$
$(-\infty, b]=\{x \in R:-\infty<x \leq b\}$
Neighbourhood: A subset $S \subset R$ is said to be a nbd of $c \in R$ if \exists an open interval (a, b) such that $c \in(a, b) \subset S$.

- An open bounded interval containing c is a nbd of c.

■ A closed bounded interval containing c may not be a nbd of $c .2 \in[2,5]$ but the closed interval [2,5] is not a nbd of 2 because we cannot find an open interval containing c which is a subset of $[2,5]$.

- A non-empty finite set is not a nbd of any point.

■ $\boldsymbol{N}(\boldsymbol{c}, \boldsymbol{\delta})=(c-\delta, c+\delta)$ is known δ - neighbourhood of $c \in R$ where $\delta>0$.

$\boldsymbol{N}^{\prime}(\boldsymbol{c}, \boldsymbol{\delta})=(c-\delta, c+\delta)-\{c\}$ is known as deleted δ-neighbourhood of c where $\delta>0$.
Limit point (accumulation point or cluster point): Let S be a subset of R. A point c in R (which may or may not be a member of S) is said to be a limit point of S if every nbd of c contains a point of S other than c. i.e., every deleted nbd of c contains a point of S. i.e., if $\forall \varepsilon(>0) \quad N^{\prime}(c, \varepsilon) \cap S \neq \emptyset$.

Theorem: If c be a limit point of S then $\forall \varepsilon(>0) N(c, \varepsilon)$ contains an infinite number of members of S.

- A set may have no limit point: the set N of natural numbers has no limit point. Also, a finite set has no limit point.
- A set may have only one limit point: For the set $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right.$ \}, ' 0 ' is the limit point but ' 0 ' is not a member of the set S.
- A set may have more than one limit points: For the set $\left\{1,1+1, \frac{1}{2}, 1+\right.$ $\left.\frac{1}{2}, \frac{1}{3}, 1+\frac{1}{3}, \ldots ..\right\}$ ' 0 ' and ' 1 ' are two limit points.
- A set may have infinite number of limit points: For the open interval (a, b) each point in the closed interval $[\mathrm{a}, \mathrm{b}]$ is a limit point.

Derived set: Let S be subset of R. The set of all limit points of S is said to be the derived set of S and is denoted by $S^{\prime} . \quad N^{\prime}=\emptyset, \quad Z^{\prime}=\emptyset, \quad Q^{\prime}=R, \quad R^{\prime}=R, \quad \emptyset^{\prime}=\emptyset, \quad(a, b)^{\prime}=[a, b]$.

Result: A finite set has no limit point.

Proof: If possible, let c be a limit point of a finite set S . Then $\forall \varepsilon(>0) N(c, \varepsilon)$ must contain an infinite number of members of S, which contradicts the hypothesis that S has a finite number of members.

Bolzano-Weierstrass theorem (on set): Every bounded infinite subset of R has a limit point (in R).

Few definitions

- Interior point: Let S be subset of R. A point $\alpha \in S$ is said to be an interior point of S if $\exists \varepsilon(>0)$ s. t. $N(\alpha, \varepsilon) \subset S$

Remark: An interior point of a set must be a member of the set.

- Boundary point: Let S be subset of R . A point $\alpha \in R$ is said to be a boundary point of S if $\forall \varepsilon(>0) N(\alpha, \varepsilon)$ contains points of s as well as point not belonging to S.

Remark: A boundary point of a set may or may not be a member of a set.

- Exterior point: Let S be subset of R . A point $\alpha \in R$ is said to be an exterior point of S if $\exists \varepsilon(>0)$ s.t. $N(\alpha, \varepsilon) \cap S=\emptyset$.

Remark: An exterior point of S must not be a member of S.

- Isolated point: Let S be subset of R . A point $\alpha \in S$ is said to be an isolated point of S if $\exists \varepsilon(>0)$ s. t. $N(\alpha, \varepsilon) \cap S=\{\alpha\}$.
i.e., α is an isolated point of S if $\exists \varepsilon(>0)$ s.t. $N(\alpha, \varepsilon)$ contains no point of S other than α.

Remark: An isolated point of a set must be a member of the set.

- Adherent point: Let S be subset of R . A point $\alpha \in R$ is said to be an adherent point of S if every nbd of α contains a point of S. i.e., if $\forall \varepsilon(>0) \quad N(\alpha, \varepsilon) \cap S \neq \emptyset$.

Remark: An adherent point may or may not belong to the set and it is either an isolated point or a limit point of the set.

Closure of a set: Let S be a subset of R. The set of all adherent points of S is said to be the closure of S and is denoted by \bar{S}. Thus, closure of S is defined to be the set of all points of S as well as the limit points of S. i.e., $\bar{S}=S \cup S^{\prime}$.

- Dense Set: Let A and B be two subsets of R . If $A \subset B$ and every point of B is a limit point of A, i.e., $x \in B \Rightarrow x \in A^{\prime}$, (or $\left.B \subset A^{\prime}\right)$, then A is said to be dense in B . For example, the set Q is dense in R , since $Q \subset R$ and every Real number is a limit point of $\mathrm{Q}\left(\right.$ as $\left.Q^{\prime}=R\right)$.

If $A=B$, we obtain the following definition:
If every point of a set S is a limit point of itself i.e., if $S \subset S^{\prime}$, then S is said to be dense-in-itself. For example, the set of rational numbers Q is dense-in-itself. The set of real numbers R is dense-in-itself. Also, every open set is dense-in-itself.

- Perfect set: Let S be a subset of R. S is said to be a perfect set if it is both closed and dense-in-itself.
We know that a set S is closed if $S^{\prime} \subset S$. Also, if $S \subset S^{\prime}$, then it is dense-in-itself. Therefore, a set is perfect if $S=S^{\prime}$.

Any closed interval [a, b], the void set \emptyset, the set R are the examples of perfect sets.
Theorem: An interior point of a set $S \subset R$ is a limit point of S.

Proof: Let c be an interior point of S. If it is not a limit point of S, then $\exists \varepsilon(>0)$ s.t. $N^{\prime}(c, \varepsilon)$ does not contain any element of S. Hence, no (+)ve δ can be found s.t. $N(c, \delta) \subset S$ which contradicts the fact that c is an interior point. Hence, c is a limit point of S.

Theorem: Any point α is either an interior point or a boundary point or an exterior point of a given linear point set S.

Proof: Let S be a given linear point set and α be any point. If α is not a boundary point of $\mathrm{S}, \exists \varepsilon(>0)$ s.t. either $N(\alpha, \varepsilon)$ contains only points of S or $N(\alpha, \varepsilon)$ contains only points not of S.

In case-I, $N(\alpha, \varepsilon) \subset S$ i.e. α is an interior point of S .
In case-II, $N(\alpha, \varepsilon) \cap S=\emptyset$ in which case α is an exterior point of S .
Theorem: A boundary point of a set $S \subset R$ is either a limit point of S or an isolated point of S.

Proof: If c be a boundary point of S, then $\forall \varepsilon(>0) N(c, \varepsilon)$ contains points of S as well as points not of S. If $\forall \varepsilon(>0) N(c, \varepsilon)$ contains points of S other than c, then c is the limit point of S. If this does not hold $\exists \varepsilon(>0)$ s.t.N (c, ε) does not contain points of S other than c. In this case $c \in S$ and further c is an isolated point of S.

Interior, Exterior, Boundary of a set S: Let S be a subset of R. The set of all interior points of S is said to be the interior of S and is denoted by int S (or by S^{0}). The set of all exterior points of S is said to be the exterior of S and is denoted by ext S. The set of all boundary points of S is said to be the boundary of S and is denoted by δS or $B d S$

Example: Let $I=(a, b)$ be an open interval. Then, every member of I is an interior point of I . The points a and b are boundary points of I. Also, any point $\alpha<a$ and $\beta>\mathrm{b}$ are exterior points of I.

Solution: Let $c \in I$. Choosing a (+)ve $\varepsilon<\min (c-a, b-c)$, we have $N(c, \varepsilon) \subset I$. $\therefore \quad c$ is an interior point of I . Since c is an arbitrary point of I , every member of I is an interior point of I.

2nd Part: The point ' a ' is a boundary point of I , since $\forall \varepsilon(>0) \quad N(a, \varepsilon)$ contains points of I as well as points not of I. Similarly, b is also a boundary point of I.

3rd Part: If $\alpha<a$, then choosing (+)ve $\varepsilon<a-\alpha$, we get $N(\alpha, \varepsilon) \cap I=\emptyset$.
$\therefore \quad \alpha$ is an exterior point of I. Similarly, if $\beta>b$, then β is an exterior point of I.
Note: Let $J=[a, b]$ be a closed interval. Then, every member $x(\mathrm{a}<\mathrm{x}<\mathrm{b})$ of J is an interior point of I. The points a and b are boundary points of J. Also, any point $\alpha<$ a and $\beta>b$ are exterior points of J .

Open set and closed set: Let S be a subset of R. S is said to be an open set if each point of S is an interior point of S. S is said to be a closed set if no point outside of S is a limit point of S. i.e., if S contains all its limit points. In other words, if the derived set $S^{\prime} \subset S$.

Example: An open interval is an open set and a closed interval is a closed set.
Solution: Let $\mathrm{I}=(\mathrm{a}, \mathrm{b})$. Let $c \in I$. Then choosing $(+) v e \varepsilon<\min (c-a, b-c)$ it follows that $N(c, \varepsilon) \subset I$. So, c is an interior point of I . Thus, every point of I is an interior point of I. hence I is an open set.

Let $\mathrm{J}=[\mathrm{a}, \mathrm{b}]$. Let $c \notin J$. If $c<a$, choosing a (+) ve $\varepsilon<a-c$, it can be seen that $N(c, \varepsilon)$ does not contain any element of \mathbf{J}. Hence, c is not a limit point of \mathbf{J}.

Again, if $c>b$, choosing a $(+) v e \varepsilon<c-b$, it follows that $\mathrm{N}(\mathrm{c}, \varepsilon)$ does not contain any element of J . Hence, c is not a limit point of J . Thus, no point outside of J is a limit point of J . So, J is a closed set.

Example: A finite set is a closed set.
Solution: Since a finite set S contains only a finite number of points, it has no limit points. $\therefore S^{\prime}=\varphi$, Hence $S^{\prime} \subset S . \therefore \mathrm{S}$ is a closed set.

Theorem: The derived set S^{\prime} of any set S is closed.
Theorem: Complement of an open set is closed and complement of a closed set is open.

- The sets R and \emptyset are both open and closed sets.

